Confidence intervals for correlations when data are not normal.

نویسندگان

  • Anthony J Bishara
  • James B Hittner
چکیده

With nonnormal data, the typical confidence interval of the correlation (Fisher z') may be inaccurate. The literature has been unclear as to which of several alternative methods should be used instead, and how extreme a violation of normality is needed to justify an alternative. Through Monte Carlo simulation, 11 confidence interval methods were compared, including Fisher z', two Spearman rank-order methods, the Box-Cox transformation, rank-based inverse normal (RIN) transformation, and various bootstrap methods. Nonnormality often distorted the Fisher z' confidence interval-for example, leading to a 95 % confidence interval that had actual coverage as low as 68 %. Increasing the sample size sometimes worsened this problem. Inaccurate Fisher z' intervals could be predicted by a sample kurtosis of at least 2, an absolute sample skewness of at least 1, or significant violations of normality hypothesis tests. Only the Spearman rank-order and RIN transformation methods were universally robust to nonnormality. Among the bootstrap methods, an observed imposed bootstrap came closest to accurate coverage, though it often resulted in an overly long interval. The results suggest that sample nonnormality can justify avoidance of the Fisher z' interval in favor of a more robust alternative. R code for the relevant methods is provided in supplementary materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a New Bimodal Normal Family

The unimodal distributions are frequently used in the theorical statistical studies. But in applied statistics, there are many situations in which the unimodal distributions can not be fitted to the data. For example, the distribution of the data outside the control zone in quality control or outlier observations in linear models and time series may require to be a bimodal. These situations, oc...

متن کامل

Area specific confidence intervals for a small area mean under the Fay-Herriot model

‎Small area estimates have received much attention from both private and public sectors due to the growing demand for effective planning of health services‎, ‎apportioning of government funds and policy and decision making‎. ‎Surveys are generally designed to give representative estimates at national or district level‎, ‎but estimates of variables of interest are oft...

متن کامل

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring

This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...

متن کامل

Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis.

This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of SE-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile intervals, and hybrid intervals are explored using simulation stud...

متن کامل

Confidence Intervals for Lower Quantiles Based on Two-Sample Scheme

In this paper, a new two-sampling scheme is proposed to construct appropriate confidence intervals for the lower population quantiles. The confidence intervals are determined in the parametric and nonparametric set up and the optimality problem is discussed in each case. Finally, the proposed procedure is illustrated via a real data set. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Behavior research methods

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 2017